Fine-grained entity typing is a challenging problem since it usually involves a relatively large tag set and may require to understand the context of the entity mention. In this paper, we use entity linking to help with the fine-grained entity type classification process. We propose a deep neural model that makes predictions based on both the context and the information obtained from entity linking results. Experimental results on two commonly used datasets demonstrates the effectiveness of our approach. On both datasets, it achieves more than 5\% absolute strict accuracy improvement over the state of the art.
翻译:微粒实体打字是一个具有挑战性的问题,因为它通常涉及一个相对较大的标签组,可能需要了解所涉实体的背景。在本文中,我们使用链接实体来帮助细粒实体类型分类过程。我们提出了一个深神经模型,根据背景和从连接结果的实体获得的信息作出预测。两个常用数据集的实验结果显示了我们的方法的有效性。在这两个数据集中,它都实现了超过5 ⁇ 绝对严格的精确性改进。