We analyse and explain the increased generalisation performance of iterate averaging using a Gaussian process perturbation model between the true and batch risk surface on the high dimensional quadratic. We derive three phenomena \latestEdits{from our theoretical results:} (1) The importance of combining iterate averaging (IA) with large learning rates and regularisation for improved regularisation. (2) Justification for less frequent averaging. (3) That we expect adaptive gradient methods to work equally well, or better, with iterate averaging than their non-adaptive counterparts. Inspired by these results\latestEdits{, together with} empirical investigations of the importance of appropriate regularisation for the solution diversity of the iterates, we propose two adaptive algorithms with iterate averaging. These give significantly better results compared to stochastic gradient descent (SGD), require less tuning and do not require early stopping or validation set monitoring. We showcase the efficacy of our approach on the CIFAR-10/100, ImageNet and Penn Treebank datasets on a variety of modern and classical network architectures.


翻译:我们用高斯进程扰动模型分析并解释高斯平流层中真实风险表面和批量风险表面之间在高维二次曲线上增加的通用性表现。我们从理论结果中得出三种现象:}(1) 将平均循环率(IA)与高学习率(IA)和常规化相结合对于改进规范化的重要性。(2) 平均频率较低的理由。(3) 我们期望适应性梯度方法同样或更好,其平均水平与其非适应性对应方相同。受这些结果的启发,Edits{与}关于适当规范化对于迭代国解决方案多样性的重要性的经验性调查一起,我们建议两种适应性算法,这些算法与偏差梯度梯度脱落(SGD)相比,效果要好得多,要求较少调整,不需要早期停止或验证成套监测。我们展示了我们在各种现代和古典网络架构上的做法的功效。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2018年11月11日
Arxiv
8+阅读 · 2018年5月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员