With the emergence of Web 2.0, tag recommenders have become important tools, which aim to support users in finding descriptive tags for their bookmarked resources. Although current algorithms provide good results in terms of tag prediction accuracy, they are often designed in a data-driven way and thus, lack a thorough understanding of the cognitive processes that play a role when people assign tags to resources. This thesis aims at modeling these cognitive dynamics in social tagging in order to improve tag recommendations and to better understand the underlying processes. As a first attempt in this direction, we have implemented an interplay between individual micro-level (e.g., categorizing resources or temporal dynamics) and collective macro-level (e.g., imitating other users' tags) processes in the form of a novel tag recommender algorithm. The preliminary results for datasets gathered from BibSonomy, CiteULike and Delicious show that our proposed approach can outperform current state-of-the-art algorithms, such as Collaborative Filtering, FolkRank or Pairwise Interaction Tensor Factorization. We conclude that recommender systems can be improved by incorporating related principles of human cognition.
翻译:随着Web 2.0的出现,标签建议者已成为重要的工具,目的是支持用户为其书签资源寻找描述性标签。虽然目前的算法在标签预测准确性方面提供了良好的效果,但往往以数据驱动的方式设计,因此,缺乏对人们为资源指定标记时发挥作用的认知过程的透彻了解。这个论文旨在模拟社会标记中的这些认知动态,以改进标签建议并更好地了解基本过程。作为朝这个方向迈出的第一步,我们实施了个人微观层面(如资源分类或时间动态)与集体宏观层面(如模仿其他用户标签)进程之间的相互作用,其形式是新颖的标记建议算法。从BibSonology、CiteUless和Mortishy中收集的数据集的初步结果显示,我们拟议的方法可以超越当前的状态算法,例如合作过滤、FolkRank或Pairwith Indexulation Tensor Pimcalization。我们的结论是,建议系统可以通过纳入相关的人类cogitionnational化原则来改进。