We propose the Gaussian Error Linear Unit (GELU), a high-performing neural network activation function. The GELU nonlinearity is the expected transformation of a stochastic regularizer which randomly applies the identity or zero map to a neuron's input. The GELU nonlinearity weights inputs by their magnitude, rather than gates inputs by their sign as in ReLUs. We perform an empirical evaluation of the GELU nonlinearity against the ReLU and ELU activations and find performance improvements across all considered computer vision, natural language processing, and speech tasks.


翻译:我们建议高斯误差线性单元(GELU),这是一个高性能神经网络激活功能。GELU的无线性是随机将身份或零映射图随机应用于神经输入的随机随机随机随机随机转换的随机随机调节器。 GOLU的非线性加权输入量按其大小,而不是按ReLUs的标记输入门输入量。我们对GELU对RELU和ELU启动的非线性进行实证评估,发现所有考虑的计算机视觉、自然语言处理和语音任务的业绩改进。

3
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年4月14日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
6+阅读 · 2020年4月14日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员