The area of domain adaptation has been instrumental in addressing the domain shift problem encountered by many applications. This problem arises due to the difference between the distributions of source data used for training in comparison with target data used during realistic testing scenarios. In this paper, we introduce a novel MultiScale Domain Adaptive YOLO (MS-DAYOLO) framework that employs multiple domain adaptation paths and corresponding domain classifiers at different scales of the recently introduced YOLOv4 object detector to generate domain-invariant features. We train and test our proposed method using popular datasets. Our experiments show significant improvements in object detection performance when training YOLOv4 using the proposed MS-DAYOLO and when tested on target data representing challenging weather conditions for autonomous driving applications.
翻译:域适应领域有助于解决许多应用中遇到的域转移问题,之所以出现这一问题,是因为用于培训的源数据的分布与实际测试情景中使用的目标数据之间存在差异。在本文件中,我们引入了一个新型的多星域适应性YOLO(MS-DAYOLO)框架,在最近推出的YOLOv4天体探测器的不同尺度上使用多个域适应路径和相应的域分级器来生成域变量特征。我们用流行数据集培训和测试了我们提议的方法。我们的实验显示,在使用拟议的MS-DAYOLOLOO培训YOLOv4时,以及在对代表自主驾驶应用挑战性天气条件的目标数据进行测试时,目标探测性能有显著改善。