项目名称: 面向光谱-空间特征集合的高光谱遥感影像度量学习与分类研究

项目编号: No.41501392

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 天文学、地球科学

项目作者: 彭江涛

作者单位: 湖北大学

项目金额: 20万元

中文摘要: 分类是高光谱遥感图像处理领域的研究热点。传统的基于光谱像素点的分类方法,因未考虑空间邻域像素的相关性,而效果欠佳。结合空间域和光谱域信息(空谱信息),进行高光谱图像分析,是提升分类性能的有效途径。其中,关键问题在于如何有效地利用空谱信息,建立合理的光谱域和空间域相似性度量。为此,本项目将光谱像素点与其空域邻域像素相结合,以高光谱图像局部同源区域或像素集为对象,建立区域或集合相似性度量,以期实现准确的地物目标分类。项目研究内容如下:1)集合凸包距离度量学习与分类,具体包括像素集结构相似性描述、正则化集合度量学习、像素集稀疏表示、核表示及协同表示分类;2)集合核度量学习与分类,包括局部同源区域的多尺度表示框架、集合核定义、集合核理想正则化提升算法、空谱组合集合核分类框架。项目研究成果有助于提升高光谱图像分类精度、推进高光谱遥感信息处理水平,具有重要的学术价值和较大的应用前景。

中文关键词: 高光谱遥感;支持向量机;机器学习;核方法;特征提取

英文摘要: Classification is an important and hot research issue in the field of hyperspectral remote sensing image processing. The traditional spectral-based classification methods perform poor mainly because they don’t exploit the spatial information and haven’t considered the inter-pixel correlations. Combining the spatial and spectral information for hyperspectral image (HSI) processing is an efficient way to improve the classification performance and becomes the development trend of hyperspectral analysis, where the use of spatial information and construction of spatial and spectral similarity metrics are crucial. Therefore, by combining the spectral pixel and its spatial neighboring pixels, the project builds set-to-set similarity metrics for the HSI classification based on the local homogeneous pixel sets of HSI, which aims to obtain desirable spectral-spatial classifiers. Based on the spectrally point-to-point similarity metric, the project focuses on: 1) convex-hull-based set-to-set similarity metric learning and classification model, including the description of the set-to-set structural similarity, regularized set-to-set distance metric learning, set-based sparse representation classification, kernel classification and collaborative representation classification algorithms; 2) set-to-set kernel similarity metric learning and classification model, including the multi-scale representation of local homogeneous regions, definition of set-to-set kernel, ideal regularization for the set-to-set kernels, composite spatial and spectral set-to-set kernels framework. The scientific research achievements help to improve the accuracy of HSI classification and to promote the remote sensing information processing level, which have important academic value and large application prospect.

英文关键词: hyperspectral remote sensing;support vector machine;machine learning; kernel-based method;feature extraction

成为VIP会员查看完整内容
0

相关内容

【博士论文】开放环境下的度量学习研究
专知会员服务
46+阅读 · 2021年12月4日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
面向行人重识别的局部特征研究进展、挑战与展望
专知会员服务
26+阅读 · 2021年10月13日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
121+阅读 · 2021年4月29日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
33+阅读 · 2021年2月7日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
特征金字塔技术总结
极市平台
0+阅读 · 2022年1月31日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像分割算法
极市平台
23+阅读 · 2019年6月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2022年1月20日
小贴士
相关VIP内容
【博士论文】开放环境下的度量学习研究
专知会员服务
46+阅读 · 2021年12月4日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
面向行人重识别的局部特征研究进展、挑战与展望
专知会员服务
26+阅读 · 2021年10月13日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
121+阅读 · 2021年4月29日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
33+阅读 · 2021年2月7日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
相关资讯
特征金字塔技术总结
极市平台
0+阅读 · 2022年1月31日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像分割算法
极市平台
23+阅读 · 2019年6月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员