We consider the problem of learning Stochastic Differential Equations of the form $dX_t = f(X_t)dt+\sigma(X_t)dW_t $ from one sample trajectory. This problem is more challenging than learning deterministic dynamical systems because one sample trajectory only provides indirect information on the unknown functions $f$, $\sigma$, and stochastic process $dW_t$ representing the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a simple kernel-based solution to this problem that can be decomposed as follows: (1) Represent the time-increment map $X_t \rightarrow X_{t+dt}$ as a Computational Graph in which $f$, $\sigma$ and $dW_t$ appear as unknown functions and random variables. (2) Complete the graph (approximate unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels) of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the efficacy, robustness, and scope of our method.
翻译:我们考虑了从一个样本轨迹中学习 $X_t = f(X_t) d ⁇ sigma(X_t)dW_t美元形式的蒸馏差异方程式问题。 这个问题比学习确定性动态系统更具挑战性, 因为一个样本轨迹只提供未知函数的间接信息 $f$, $\gma$, 和 $dW_t美元, 代表漂移、扩散和随机强制条件的随机过程。 我们提出了一个简单的基于内核的解决方案,可以解析如下:(1) 代表时间加速映射地图 $X_ t\ right X ⁇ t+dt} 美元, 因为它是一个计算性图, 其中美元、 $\ grama$ 和 $dWt$_t$作为未知函数和随机变量。 (2) 通过最高级的“ 最接近的未知函数和随机变量” 完成图表( 提供数据) 与高斯进程(GP) 之前的随机性进程(GP) 相比, 显示我们之前的随机性方法。 (3) 学习了我们之前的快速性模型功能。