Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules. Our implementation is available at https://github.com/luping-liu/PNDM.
翻译:然而,这些加速方法无法保持样品质量,甚至无法以高速度引入新噪音,从而限制其实用性。为了在保持样品质量的同时加快推断过程,我们提供了一个新的视角,即DDPMS应该被视作解决元件上的差异方程式。在这种视角下,我们提出了传播模型的假数字方法(PNDMs)。具体地说,我们想出如何解决元件上的差分方程式,并表明DDIMS是模拟数字方法的简单案例。我们改变了若干典型的数字方法,以相应的高数字方法,并发现在相应的数字方法中,在使用样本质量的同时加快推断过程。为了在保持样品质量的同时,我们提供了一个新的视角,即DDPMS应该被当作解决元件上的差异方程式。在这种视角下,我们提出了传播模型的假数字方法(PDDDDMss)。具体地说,我们如何解决元件上的差方程式,并表明DDIMS是模拟数字方法的简单案例。我们改变了一些典型的数字方法,在相应的数字方法上发现,在SAL-DMS(S)中,在最高级的平面的多步式数字模型中,在SLMSDMS中可以产生最佳的进度中,在SDMSRRRDMS。