We introduce adversarial learning methods for data-driven generative modeling of the dynamics of $n^{th}$-order stochastic systems. Our approach builds on Generative Adversarial Networks (GANs) with generative model classes based on stable $m$-step stochastic numerical integrators. We introduce different formulations and training methods for learning models of stochastic dynamics based on observation of trajectory samples. We develop approaches using discriminators based on Maximum Mean Discrepancy (MMD), training protocols using conditional and marginal distributions, and methods for learning dynamic responses over different time-scales. We show how our approaches can be used for modeling physical systems to learn force-laws, damping coefficients, and noise-related parameters. The adversarial learning approaches provide methods for obtaining stable generative models for dynamic tasks including long-time prediction and developing simulations for stochastic systems.
翻译:我们采用对抗性学习方法,对以美元为单位的随机系统动态进行数据驱动的基因模型,我们的方法以创形反对流网络为基础,在稳定以百万美元为步骤的随机数字集成器的基础上,建立基因模型班,我们采用不同的配方和培训方法,根据对轨迹样本的观察,建立随机动态模型学习模型,我们采用基于最大均值差异(MMD)的歧视者方法,使用有条件和边际分布的训练协议,以及在不同时间尺度上学习动态反应的方法,我们展示了如何利用我们的方法模拟物理系统,以学习武力法、临界系数和噪音相关参数,这些对抗性学习方法为获得动态任务的稳定基因模型提供了方法,包括长期预测和开发对随机系统进行模拟。