This paper presents AdaChain, a learning-based blockchain framework that adaptively chooses the best permissioned blockchain architecture in order to optimize effective throughput for dynamic transaction workloads. AdaChain addresses the challenge in the Blockchain-as-a-Service (BaaS) environments, where a large variety of possible smart contracts are deployed with different workload characteristics. AdaChain supports automatically adapting to an underlying, dynamically changing workload through the use of reinforcement learning. When a promising architecture is identified, AdaChain switches from the current architecture to the promising one at runtime in a way that respects correctness and security concerns. Experimentally, we show that AdaChain can converge quickly to optimal architectures under changing workloads, significantly outperform fixed architectures in terms of the number of successfully committed transactions, all while incurring low additional overhead.
翻译:暂无翻译