Infrared small object detection (ISOS) aims to segment small objects only covered with several pixels from clutter background in infrared images. It's of great challenge due to: 1) small objects lack of sufficient intensity, shape and texture information; 2) small objects are easily lost in the process where detection models, say deep neural networks, obtain high-level semantic features and image-level receptive fields through successive downsampling. This paper proposes a reliable detection model for ISOS, dubbed UCFNet, which can handle well the two issues. It builds upon central difference convolution (CDC) and fast Fourier convolution (FFC). On one hand, CDC can effectively guide the network to learn the contrast information between small objects and the background, as the contrast information is very essential in human visual system dealing with the ISOS task. On the other hand, FFC can gain image-level receptive fields and extract global information while preventing small objects from being overwhelmed.Experiments on several public datasets demonstrate that our method significantly outperforms the state-of-the-art ISOS models, and can provide useful guidelines for designing better ISOS deep models. Codes will be available soon.
翻译:红外小天体探测(ISOS) 的目的是通过红外图象中来自杂状背景的几像素来分割小物体,因为:(1) 小物体缺乏足够的强度、形状和纹理信息;(2) 小物体很容易在探测模型,如深神经网络,通过连续下游取样获得高层次的语义特征和图像级可接收字段的进程中丢失。本文为ISOS, 称为UCFNet, 可以很好地处理这两个问题, 提出了一个可靠的探测模型。 它建立在中央变异(CDC) 和快速四面形变(FFC) 的基础上。 一方面, CDC 可以有效地指导网络学习小物体和背景之间的对比信息, 因为对比信息在与ISOS任务打交道的人类视觉系统中非常重要。 另一方面, FFC可以获得图像级的可接收字段, 并提取全球信息, 同时防止小物体被超载。 几个公共数据集的演示表明, 我们的方法大大地超越了 State- art ISOS 模型, 并且可以提供有用的指南, 设计更好的深层ISOS 模型。