Tiny object detection has become an active area of research because images with tiny targets are common in several important real-world scenarios. However, existing tiny object detection methods use standard deep neural networks as their backbone architecture. We argue that such backbones are inappropriate for detecting tiny objects as they are designed for the classification of larger objects, and do not have the spatial resolution to identify small targets. Specifically, such backbones use max-pooling or a large stride at early stages in the architecture. This produces lower resolution feature-maps that can be efficiently processed by subsequent layers. However, such low-resolution feature-maps do not contain information that can reliably discriminate tiny objects. To solve this problem we design 'bottom-heavy' versions of backbones that allocate more resources to processing higher-resolution features without introducing any additional computational burden overall. We also investigate if pre-training these backbones on images of appropriate size, using CIFAR100 and ImageNet32, can further improve performance on tiny object detection. Results on TinyPerson and WiderFace show that detectors with our proposed backbones achieve better results than the current state-of-the-art methods.
翻译:微小目标检测已成为研究领域的一个活跃领域,因为在几个重要的实际场景中,图像中存在微小目标。然而,现有的微小目标检测方法使用标准的深度神经网络作为它们的骨架架构。我们认为,这样的骨干架构不适合检测微小目标,因为它们是为分类较大的目标而设计的,并且没有空间分辨率来识别小目标。具体而言,这样的主干使用最大池化或在架构的早期阶段使用大步长。这产生较低的分辨率特征映射可以被后续层有效处理。然而,这样的低分辨率特征映射不包含可靠区分微小目标的信息。为了解决这个问题,我们设计了 “底部较重” 的骨干版本,这些版本将更多的资源分配给处理更高分辨率的特征,而不会引入任何额外的计算负担。我们还调查了这些骨干在适当尺寸的图像上进行预训练,使用CIFAR100和ImageNet32,是否可以进一步提高微小目标检测的性能。在TinyPerson和WiderFace上的结果显示,使用我们提出的骨干的检测器比当前最先进的方法获得更好的结果。