In real-world scenarios, it may not always be possible to collect hundreds of labeled samples per class for training deep learning-based SAR Automatic Target Recognition (ATR) models. This work specifically tackles the few-shot SAR ATR problem, where only a handful of labeled samples may be available to support the task of interest. Our approach is composed of two stages. In the first, a global representation model is trained via self-supervised learning on a large pool of diverse and unlabeled SAR data. In the second stage, the global model is used as a fixed feature extractor and a classifier is trained to partition the feature space given the few-shot support samples, while simultaneously being calibrated to detect anomalous inputs. Unlike competing approaches which require a pristine labeled dataset for pretraining via meta-learning, our approach learns highly transferable features from unlabeled data that have little-to-no relation to the downstream task. We evaluate our method in standard and extended MSTAR operating conditions and find it to achieve high accuracy and robust out-of-distribution detection in many different few-shot settings. Our results are particularly significant because they show the merit of a global model approach to SAR ATR, which makes minimal assumptions, and provides many axes for extendability.


翻译:在真实场景下,可能无法收集每个类别数百个标记样本来训练基于深度学习的SAR自动目标识别(ATR)模型。本研究专门解决了几何形状目标识别少样本问题,即只有一小撮标记样本可用于支持所需识别任务。我们的方法由两个阶段组成。首先,通过自监督学习在大量不同的未标记SAR数据上训练全局表示模型。第二阶段,全局模型用作固定特征提取器,训练分类器以基于少数支持样本来划分特征空间,同时进行校准以检测异常输入。与需要精确标记数据集来进行元学习预训练的竞争方法不同,我们的方法从与下游任务几乎无关的未标记数据中学习高度可转移的特征。我们在标准和扩展MSTAR操作条件下进行了评估,并发现它在许多不同的少样本设置中实现了高精度和强大的超出分布检测能力。我们的结果特别重要,因为它们展示了全局模型方法对SAR ATR的优点,它作出了最小假设,并提供了许多可延伸的维度。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用CNN分100,000类图像
极市平台
17+阅读 · 2018年1月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用CNN分100,000类图像
极市平台
17+阅读 · 2018年1月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员