We present a data structure that for a dynamic graph $G$ that is updated by edge insertions and deletions, maintains a tree decomposition of $G$ of width at most $6k+5$ under the promise that the treewidth of $G$ never grows above $k$. The amortized update time is ${\cal O}_k(2^{\sqrt{\log n}\log\log n})$, where $n$ is the vertex count of $G$ and the ${\cal O}_k(\cdot)$ notation hides factors depending on $k$. In addition, we also obtain the dynamic variant of Courcelle's Theorem: for any fixed property $\varphi$ expressible in the $\mathsf{CMSO}_2$ logic, the data structure can maintain whether $G$ satisfies $\varphi$ within the same time complexity bounds. To a large extent, this answers a question posed by Bodlaender [WG 1993].
翻译:我们提出了一种数据结构,针对通过边插入和删除更新的动态图$G$,在保证它的树宽永远不大于$k$的前提下,维护$G$的一种树分解,宽度最多为$6k+5$。摊销更新时间复杂度为${\cal O}_k(2 ^{\sqrt{\log n}\log\log n})$,其中$n$为$G$的顶点数,${\cal O}_k(\cdot)$符号隐藏了依赖于$k$的因子。此外,我们还获得了Courcelle定理的动态变体: 对于任何固定的$\varphi$属性,该数据结构可以在相同的时间复杂度下维护$G$是否满足$\varphi$。在很大程度上,这回答了Bodlaender[WG 1993]提出的一个问题。