The Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to combinatorial optimization problems. Its performance monotonically improves with its depth $p$. We apply the QAOA to MaxCut on large-girth $D$-regular graphs. We give an iterative formula to evaluate performance for any $D$ at any depth $p$. Looking at random $D$-regular graphs, at optimal parameters and as $D$ goes to infinity, we find that the $p=11$ QAOA beats all classical algorithms (known to the authors) that are free of unproven conjectures. While the iterative formula for these $D$-regular graphs is derived by looking at a single tree subgraph, we prove that it also gives the ensemble-averaged performance of the QAOA on the Sherrington-Kirkpatrick (SK) model. Our iteration is a compact procedure, but its computational complexity grows as $O(p^2 4^p)$. This iteration is more efficient than the previous procedure for analyzing QAOA performance on the SK model, and we are able to numerically go to $p=20$. Encouraged by our findings, we make the optimistic conjecture that the QAOA, as $p$ goes to infinity, will achieve the Parisi value. We analyze the performance of the quantum algorithm, but one needs to run it on a quantum computer to produce a string with the guaranteed performance.


翻译:QAOA 使用 QAOA 来评估任何深度$D的运行情况。 查看随机的 $D- 常规图形, 以最佳参数计算, 并随着 $D 到无限度, 我们发现 $p= 11$ QAOA 与所有经典算法( 作者们知道) 相比, 其性能会随着深度的深度而得到改善。 我们用一个迭代公式来评估任何美元( 美元) 的运行情况。 我们发现, 随机的 $D- 常规图表, 以最佳参数和 $D- 优化值( QAOA ), 其性能比所有经典算法( 作者们知道 $QQ_ 2 4QP ) 的运行情况都要好。 虽然这些美元 普通图形的迭代公式是用单一的树底图解算出来的, 我们也可以在 Sherring- Kirkpric (SK) 模型上给出QAAA 平均性表现。 我们的保证量程序是压缩程序, 但是它的计算复杂度是 以 $OQO2 4_A 能够生成。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年10月9日
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年12月26日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员