Many problems that can be solved in quadratic time have bit-parallel speed-ups with factor $w$, where $w$ is the computer word size. For example, edit distance of two strings of length $n$ can be solved in $O(n^2/w)$ time. In a reasonable classical model of computation, one can assume $w=\Theta(\log n)$. There are conditional lower bounds for such problems stating that speed-ups with factor $n^\epsilon$ for any $\epsilon>0$ would lead to breakthroughs in complexity theory. However, these conditional lower bounds do not cover quantum models of computing. Moreover, it is open if problems like edit distance can be solved in truly sub-quadratic time using quantum computing. To partially address this question, we study another bit-parallel algorithm for a problem that admits a quadratic conditional lower bound, and show how to convert its bit-parallelism into a realistic quantum algorithm that attains speed-up with factor $n$. The technique we use is simple and general enough to apply to many similar bit-parallel algorithms, where dependencies are local. However, it does not immediately yield a faster algorithm for more complex problems like edit distance, whose bit-parallel dynamic programming solutions require breaking more global dependencies. We hope that this initial study sheds some light on how, in general, bit-parallelism could be converted to quantum parallelism.


翻译:在二次时间里可以解决的许多问题都有以美元计算的比分差加速系数, 以美元计算, 美元是计算机单词大小。 例如, 编辑两个长字符的距离 $n美元可以用美元( {2/ w) 时间解决 。 在合理的经典计算模型中, 可以假设$w ⁇ Theta(\ log n) 美元。 这些问题的下限条件性较低, 表明任何美元( eepsilon) 的比值加速将会导致复杂理论的突破。 但是, 这些条件性较低的边框并不包括计算量子模型。 此外, 如果像编辑距离这样的问题可以用量子计算在真正的次赤道时间里解决 。 为了部分解决这个问题, 我们可以研究另一个小比方的算算法, 承认一个四进制条件较低的约束, 并展示如何将其位数单数转换成一种现实的量算法, 以美元计算速度。 但是, 我们使用的技术非常简单和一般的初始范围并不包含数量模型。 此外, 这种技术可以适用于许多比位平差的初始的初始模型模型模型模型模型模型模型, 需要更快速的快速的 。

0
下载
关闭预览

相关内容

【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【经典书】线性代数,436页pdf
专知
3+阅读 · 2021年3月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【经典书】线性代数,436页pdf
专知
3+阅读 · 2021年3月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员