Many problems that can be solved in quadratic time have bit-parallel speed-ups with factor $w$, where $w$ is the computer word size. For example, edit distance of two strings of length $n$ can be solved in $O(n^2/w)$ time. In a reasonable classical model of computation, one can assume $w=\Theta(\log n)$. There are conditional lower bounds for such problems stating that speed-ups with factor $n^\epsilon$ for any $\epsilon>0$ would lead to breakthroughs in complexity theory. However, these conditional lower bounds do not cover quantum models of computing. Moreover, it is open if problems like edit distance can be solved in truly sub-quadratic time using quantum computing. To partially address this question, we study another bit-parallel algorithm for a problem that admits a quadratic conditional lower bound, and show how to convert its bit-parallelism into a realistic quantum algorithm that attains speed-up with factor $n$. The technique we use is simple and general enough to apply to many similar bit-parallel algorithms, where dependencies are local. However, it does not immediately yield a faster algorithm for more complex problems like edit distance, whose bit-parallel dynamic programming solutions require breaking more global dependencies. We hope that this initial study sheds some light on how, in general, bit-parallelism could be converted to quantum parallelism.
翻译:在二次时间里可以解决的许多问题都有以美元计算的比分差加速系数, 以美元计算, 美元是计算机单词大小。 例如, 编辑两个长字符的距离 $n美元可以用美元( {2/ w) 时间解决 。 在合理的经典计算模型中, 可以假设$w ⁇ Theta(\ log n) 美元。 这些问题的下限条件性较低, 表明任何美元( eepsilon) 的比值加速将会导致复杂理论的突破。 但是, 这些条件性较低的边框并不包括计算量子模型。 此外, 如果像编辑距离这样的问题可以用量子计算在真正的次赤道时间里解决 。 为了部分解决这个问题, 我们可以研究另一个小比方的算算法, 承认一个四进制条件较低的约束, 并展示如何将其位数单数转换成一种现实的量算法, 以美元计算速度。 但是, 我们使用的技术非常简单和一般的初始范围并不包含数量模型。 此外, 这种技术可以适用于许多比位平差的初始的初始模型模型模型模型模型模型模型, 需要更快速的快速的 。