Non-linearity of a Boolean function indicates how far it is from any linear function. Despite there being several strong results about identifying a linear function and distinguishing one from a sufficiently non-linear function, we found a surprising lack of work on computing the non-linearity of a function. The non-linearity is related to the Walsh coefficient with the largest absolute value; however, the naive attempt of picking the maximum after constructing a Walsh spectrum requires $\Theta(2^n)$ queries to an $n$-bit function. We improve the scenario by designing highly efficient quantum and randomised algorithms to approximate the non-linearity allowing additive error, denoted $\lambda$, with query complexities that depend polynomially on $\lambda$. We prove lower bounds to show that these are not very far from the optimal ones. The number of queries made by our randomised algorithm is linear in $n$, already an exponential improvement, and the number of queries made by our quantum algorithm is surprisingly independent of $n$. Our randomised algorithm uses a Goldreich-Levin style of navigating all Walsh coefficients and our quantum algorithm uses a clever combination of Deutsch-Jozsa, amplitude amplification and amplitude estimation to improve upon the existing quantum versions of the Goldreich-Levin technique.


翻译:Boolean 函数的无线性表示它与任何线性函数的距离。 尽管在确定线性函数和将一个功能与足够非线性函数区分方面有好几项强有力的结果, 但我们发现在计算函数的非线性方面却出乎意料地缺乏工作。 非线性与具有最大绝对值的沃尔什系数有关; 然而, 在构建一个沃尔什频谱后选择最大值的天真的尝试需要$\Theta(2 ⁇ n) 查询到一个美元比特函数。 我们通过设计高效的量和随机化算法来将非线性允许的错误( denodd $\lambda$)与足够非线性函数区别开来改进设想。 我们证明非线性与计算性系数值有关; 我们的随机化算法的查询数量是以美元为线性, 已经是指数性改进的, 我们的定量算法使用一种非线性的非线性算法, 将所有沃尔什- 兰斯- 度 的导航性 率 和 我们的定量算法的精准性 组合 将所有沃尔什- 度 的 度 度 的 度 的 度 的 的 的 的 的 度 的 的 的 的 和 的 的 的 的 的 的 的 的 的 数字 的 的 的 和 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员