In this paper, we consider the ``Shortest Superstring Problem''(SSP) or the ``Shortest Common Superstring Problem''(SCS). The problem is as follows. For a positive integer $n$, a sequence of n strings $S=(s^1,\dots,s^n)$ is given. We should construct the shortest string $t$ (we call it superstring) that contains each string from the given sequence as a substring. The problem is connected with the sequence assembly method for reconstructing a long DNA sequence from small fragments. We present a quantum algorithm with running time $O^*(1.728^n)$. Here $O^*$ notation does not consider polynomials of $n$ and the length of $t$.
翻译:本文将“ 最短超绳问题 ” (SSP) 或“ 最短超绳问题 ” (SCS) 或“ 最短常见超绳问题 ” (SCS) 。 问题如下。 对于正整数$, 给出的序列为n字符串 $s=( s=1,\ dots, s ⁇ n) 。 我们应该将包含给定序列的每条字符串的最短字符串( 我们称之为超级字符串)作为子字符串。 问题与从小碎片中重建长DNA序列的序列组装法有关。 我们提出了一个有运行时间的量子算法 $( 1. 728 ⁇ ) $。 这里的美元表示不考虑美元和美元长度的多元值 。