Current semi-supervised semantic segmentation methods mainly focus on designing pixel-level consistency and contrastive regularization. However, pixel-level regularization is sensitive to noise from pixels with incorrect predictions, and pixel-level contrastive regularization has memory and computational cost with O(pixel_num^2). To address the issues, we propose a novel region-level contrastive and consistency learning framework (RC^2L) for semi-supervised semantic segmentation. Specifically, we first propose a Region Mask Contrastive (RMC) loss and a Region Feature Contrastive (RFC) loss to accomplish region-level contrastive property. Furthermore, Region Class Consistency (RCC) loss and Semantic Mask Consistency (SMC) loss are proposed for achieving region-level consistency. Based on the proposed region-level contrastive and consistency regularization, we develop a region-level contrastive and consistency learning framework (RC^2L) for semi-supervised semantic segmentation, and evaluate our RC$^2$L on two challenging benchmarks (PASCAL VOC 2012 and Cityscapes), outperforming the state-of-the-art.
翻译:目前半监督的语义分解方法主要侧重于设计像素水平的一致性和对比性规范。然而,像素级的正规化对有不正确的预测的像素产生的噪音十分敏感,象素级的对比性规范化对O(像素_num ⁇ 2)具有记忆和计算成本。为了解决这些问题,我们提出了一个新的区域级的对比性和一致性学习框架(RC2L),用于半监督的语义分解。具体地说,我们首先提出一个区域面貌对比性(RDC)损失和地区特征对比性(RRC)损失,以完成地区级对比性财产。此外,为了实现地区级的一致性,提出了区域级的分类一致性(RCC)损失和中间性标志一致性(SMC)损失。根据拟议的区域级对比性和一致性规范化,我们制定了一个区域级的对比性和一致性学习框架(RC2L),用于半监督的语义分解分解(RC$2L),并评估我们关于两个具有挑战性的基准(PASAL VOC2012年州和州立的对比性基准)的RC2L。