The immersed boundary (IB) method is a non-body conforming approach to fluid-structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and incompressibility of a coupled fluid-structure system and a Lagrangian description of the deformations, stresses, and resultant forces of the immersed structure. Integral transforms with Dirac delta function kernels couple the Eulerian and Lagrangian variables, and in practice, discretizations of these integral transforms use regularized delta function kernels. Many different kernel functions have been proposed, but prior numerical work investigating the impact of the choice of kernel function on the accuracy of the methodology has been limited. This work systematically studies the effect of the choice of regularized delta function in several FSI benchmark tests using the immersed finite element/difference (IFED) method, which is an extension of the IB method that uses a finite element structural discretizations combined with a Cartesian grid finite difference method for the incompressible Navier-Stokes equations. The IFED formulation evaluates the regularized delta function on a collection of interaction points that can be chosen to be denser than the nodes of the Lagrangian mesh, and this study investigates the effect of varying the relative mesh widths of the Lagrangian and Eulerian discretizations. Our results indicate that kernels satisfying a commonly imposed even-odd condition require higher resolution to achieve similar accuracy as kernels that do not satisfy. We also find that narrower kernels are more robust and that structural meshes that are substantially coarser than the Cartesian grid can yield high accuracy for shear-dominated cases but not for cases with large normal forces. We verify our results in a large-scale FSI model of a bovine pericardial bioprosthetic heart valve in a pulse duplicator.
翻译:淡化边界( IB) 方法是一种对流体结构互动( FSI ) 的非机体匹配方法, 它使用 Eulelian 描述流体结构的动力、 粘度和不压缩性, 以及 混合流体结构的变形、 压力和结果力的Lagranangian 描述。 与 Dirac delta 函数内核结合使用 Eulelian 和 Lagrangian 变量, 在实践中, 这些整体变形的离散使用常规化 delta 函数内核。 已经提出了许多不同的内核功能, 但先前对混合体结构结构结构结构系统对方法准确性的影响所作的调查有限。 这项工作系统地研究在几次FSI 基准测试中, 使用沉化的内核元素/ 变异性( IFED) 方法进行综合变异性变异性变异性变异性变异性, 使用固定的元件结构变异性变异, 与卡氏变异变异的变异性变异方法结合。 用于可压缩的内压的内核分析, 也是常规变式变式变式变式变式变式变式变式变式变式变式变式变式变式的变式变异式变式变式变式变式变式的变异性变异性变式, 。