Parameter identification for marine ecosystem models is important for the assessment and validation of marine ecosystem models against observational data. The surrogate-based optimization (SBO) is a computationally efficient method to optimize complex models. SBO replaces the computationally expensive (high-fidelity) model by a surrogate constructed from a less accurate but computationally cheaper (low-fidelity) model in combination with an appropriate correction approach, which improves the accuracy of the low-fidelity model. To construct a computationally cheap low-fidelity model, we tested three different approaches to compute an approximation of the annual periodic solution (i.e., a steady annual cycle) of a marine ecosystem model: firstly, a reduced number of spin-up iterations (several decades instead of millennia), secondly, an artificial neural network (ANN) approximating the steady annual cycle and, finally, a combination of both approaches. Except for the low-fidelity model using only the ANN, the SBO yielded a solution close to the target and reduced the computational effort significantly. If an ANN approximating appropriately a marine ecosystem model is available, the SBO using this ANN as low-fidelity model presents a promising and computational efficient method for the validation.
翻译:为海洋生态系统模型确定参数对于对照观测数据评估和验证海洋生态系统模型十分重要。代用优化(SBO)是优化复杂模型的一种计算效率高的方法。SBO用一种不那么准确但计算更廉价(低不忠)模型和适当校正方法相结合的代用模型取代了计算费用昂贵(高不忠)模型,后者的代用模型,后者的计算成本较低(低不忠)模型的准确性更高。为了建立一个计算便宜的低不忠模型,我们测试了三种不同方法,以计算海洋生态系统模型的年度定期解决方案的近似值(即稳定的年度周期 ):首先,减少旋转式迭代代代用(数十年而不是千年期 ),其次,人为神经网络(ANN)接近稳定的年周期,最后,两种方法的组合。除了仅使用非国内网,SBO,我们测试了一种接近目标的解决方案,并大大减少了计算努力。如果ANNA AS-QRO模型是用于低风险的,则使用一种低度的海洋生态系统模型。