Parameter identification for marine ecosystem models is important for the assessment and validation of marine ecosystem models against observational data. The surrogate-based optimization (SBO) is a computationally efficient method to optimize complex models. SBO replaces the computationally expensive (high-fidelity) model by a surrogate constructed from a less accurate but computationally cheaper (low-fidelity) model in combination with an appropriate correction approach, which improves the accuracy of the low-fidelity model. To construct a computationally cheap low-fidelity model, we tested three different approaches to compute an approximation of the annual periodic solution (i.e., a steady annual cycle) of a marine ecosystem model: firstly, a reduced number of spin-up iterations (several decades instead of millennia), secondly, an artificial neural network (ANN) approximating the steady annual cycle and, finally, a combination of both approaches. Except for the low-fidelity model using only the ANN, the SBO yielded a solution close to the target and reduced the computational effort significantly. If an ANN approximating appropriately a marine ecosystem model is available, the SBO using this ANN as low-fidelity model presents a promising and computational efficient method for the validation.


翻译:为海洋生态系统模型确定参数对于对照观测数据评估和验证海洋生态系统模型十分重要。代用优化(SBO)是优化复杂模型的一种计算效率高的方法。SBO用一种不那么准确但计算更廉价(低不忠)模型和适当校正方法相结合的代用模型取代了计算费用昂贵(高不忠)模型,后者的代用模型,后者的计算成本较低(低不忠)模型的准确性更高。为了建立一个计算便宜的低不忠模型,我们测试了三种不同方法,以计算海洋生态系统模型的年度定期解决方案的近似值(即稳定的年度周期 ):首先,减少旋转式迭代代代用(数十年而不是千年期 ),其次,人为神经网络(ANN)接近稳定的年周期,最后,两种方法的组合。除了仅使用非国内网,SBO,我们测试了一种接近目标的解决方案,并大大减少了计算努力。如果ANNA AS-QRO模型是用于低风险的,则使用一种低度的海洋生态系统模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员