Instead of using current deep-learning segmentation models (like the UNet and variants), we approach the segmentation problem using trained Convolutional Neural Network (CNN) classifiers, which automatically extract important features from images for classification. Those extracted features can be visualized and formed into heatmaps using Gradient-weighted Class Activation Mapping (Grad-CAM). This study tested whether the heatmaps could be used to segment the classified targets. We also proposed an evaluation method for the heatmaps; that is, to re-train the CNN classifier using images filtered by heatmaps and examine its performance. We used the mean-Dice coefficient to evaluate segmentation results. Results from our experiments show that heatmaps can locate and segment partial tumor areas. But use of only the heatmaps from CNN classifiers may not be an optimal approach for segmentation. We have verified that the predictions of CNN classifiers mainly depend on tumor areas, and dark regions in Grad-CAM's heatmaps also contribute to classification.
翻译:我们使用经过训练的进化神经网络(CNN)分类器,从图像中自动提取重要特征以供分类。这些提取的特征可以视觉化,并形成成热图,使用梯度加权分类活化映射(Grad-CAM)进行。本研究测试了热图是否可以用于分割分类目标。我们还提出了热图的评估方法;即利用经热图过滤的图像对CNN分类器进行再培训并检查其性能。我们使用平均值系数来评估分解结果。我们的实验结果表明,热图可以定位和部分肿瘤区域。但仅使用CNN分类仪的热图可能不是分解的最佳方法。我们已经核实CNN分类器的预测主要取决于肿瘤区域,以及格雷德-CAM热图中的暗区域也有助于分类。