Optimum parameter estimation methods require knowledge of a parametric probability density that statistically describes the available observations. In this work we examine Bayesian and non-Bayesian parameter estimation problems under a data-driven formulation where the necessary parametric probability density is replaced by available data. We present various data-driven versions that either result in neural network approximations of the optimum estimators or in well defined optimization problems that can be solved numerically. In particular, for the data-driven equivalent of non-Bayesian estimation we end up with optimization problems similar to the ones encountered for the design of generative networks.
翻译:最佳参数估计方法要求了解从统计角度描述现有观测结果的参数概率密度。在这项工作中,我们根据数据驱动的公式,在必要的参数概率密度被现有数据所取代的情况下,根据数据驱动的公式,审查贝耶斯和非拜耶斯的参数估计问题。我们提出了各种数据驱动的版本,这些版本既可导致最佳估计数字的神经网络近似,也可导致可以数字解决的明确界定的优化问题。特别是,对于数据驱动的与非巴耶斯估计值相等的优化问题,我们最终会遇到类似于在基因网络设计中遇到的问题的优化问题。