Soft electrohydraulic actuators known as HASEL actuators have attracted widespread research interest due to their outstanding dynamic performance and high output power. However, the displacement of electrohydraulic actuators usually declines with time under constant DC voltage, which hampers its prospective application. A mathematical model is firstly established to not only explain the decrease in displacement under DC voltage but also predict the relatively stable displacement with oscillation under AC square wave voltage. The mathematical model is validated since the actual displacement confirms the trend observed by our model. To smooth the displacement oscillation introduced by AC voltage, a serial elastic component is incorporated to form a SE-HASEL actuator. A feedback control with a proportion-integration algorithm enables the SE-HASEL actuator to eliminate the obstinate displacement hysteresis. Our results revealed that, through our methodology, the SE-HASEL actuator can give stable and smooth displacement and is capable of absorbing external impact disturbance simultaneously. A rotary joint based on the SE-HASEL actuator is developed to reflect its possibility to generate a common rotary motion for wide robotic applications. More importantly, this paper also proposes a highly accurate needle biopsy robot that can be utilized in MRI-guide surgical procedures. Overall, we have achieved AC-driven series elastic electrohydraulic actuators that can exhibit stable and smooth displacement output.
翻译:暂无翻译