Recent advancements in drone technology have shown that commercial off-the-shelf Micro Aerial Drones are more effective than large-sized drones for performing flight missions in narrow environments, such as swarming, indoor navigation, and inspection of hazardous locations. Due to their deployments in many civilian and military applications, safe and reliable communication of these drones throughout the mission is critical. The Crazyflie ecosystem is one of the most popular Micro Aerial Drones and has the potential to be deployed worldwide. In this paper, we empirically investigate two interference attacks against the Crazy Real Time Protocol (CRTP) implemented within the Crazyflie drones. In particular, we explore the feasibility of experimenting two attack vectors that can disrupt an ongoing flight mission: the jamming attack, and the hijacking attack. Our experimental results demonstrate the effectiveness of such attacks in both autonomous and non-autonomous flight modes on a Crazyflie 2.1 drone. Finally, we suggest potential shielding strategies that guarantee a safe and secure flight mission. To the best of our knowledge, this is the first work investigating jamming and hijacking attacks against Micro Aerial Drones, both in autonomous and non-autonomous modes.
翻译:暂无翻译