Machine learning approaches have been widely used for discovering the underlying physics of dynamical systems from measured data. Existing approaches, however, still lack robustness, especially when the measured data contain a large level of noise. The lack of robustness is mainly attributed to the insufficient representativeness of used features. As a result, the intrinsic mechanism governing the observed system cannot be accurately identified. In this study, we use an efficient topological descriptor for complex data, i.e., the Euler characteristics (ECs), as features to characterize the spatiotemporal data collected from dynamical systems and discover the underlying physics. Unsupervised manifold learning and supervised classification results show that EC can be used to efficiently distinguish systems with different while similar governing models. We also demonstrate that the machine learning approaches using EC can improve the confidence level of sparse regression methods of physics discovery.


翻译:现有方法仍然缺乏稳健性,特别是当测量的数据含有大量噪音时,缺乏稳健性主要是因为使用过的特征的代表性不足,因此无法准确地确定所观测系统的内在机制。在本研究中,我们对复杂数据使用高效的地形描述符,即Euler特性(ECs),作为从动态系统收集的随机时空数据特征特征,并发现基本物理特征。未经监督的多重学习和监督的分类结果显示,EC可用于有效地区别不同管理模式和类似管理模式的系统。我们还表明,使用EC的机器学习方法可以提高物理发现稀有回归方法的信任度。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
3+阅读 · 2018年8月27日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员