Approximating the recent phylogeny of $N$ phased haplotypes at a set of variants along the genome is a core problem in modern population genomics and central to performing genome-wide screens for association, selection, introgression, and other signals. The Li & Stephens (LS) model provides a simple yet powerful hidden Markov model for inferring the recent ancestry at a given variant, represented as an $N \times N$ distance matrix based on posterior decodings. However, existing posterior decoding implementations for the LS model cannot scale to modern datasets with tens or hundreds of thousands of genomes. This work focuses on providing a high-performance engine to compute the LS model, enabling users to rapidly develop a range of variant-specific ancestral inference pipelines on top, exposed via an easy to use package, kalis, in the statistical programming language R. kalis exploits both multi-core parallelism and modern CPU vector instruction sets to enable scaling to problem sizes that would previously have been prohibitively slow to work with. The resulting distance matrices enable local ancestry, selection, and association studies in modern large scale genomic datasets.
翻译:在基因组的一组变种中,最近出现了以美元为零的分阶段分流型的基因质,这是现代人口基因组学的一个核心问题,也是进行全基因组的组合、选择、反向和其他信号的筛选的核心。Li & Stephens(LS)模型提供了一个简单而有力的隐藏模式,用于在某个变种中推断最近的祖先。该模型代表着一个以后代解码为基础的以美元为单位的远距矩阵。然而,LS模型的现有后代解码实施无法与数万或数十万个基因组的现代数据集相匹配。这项工作的重点是提供高性能引擎,以计算LS模型,使用户能够迅速开发顶部的一系列变异的祖传引力管道,通过易于使用的包,Kalis,在统计方案编制语言中,R. Kalis,利用了多核心平行和现代CPU矢量教学组,以便能够将问题大小缩到以前与千千千千千千个基因组的现代组合,从而使得远程选择能够进行大规模联系。