Recently, unsupervised domain adaptation in satellite pose estimation has gained increasing attention, aiming at alleviating the annotation cost for training deep models. To this end, we propose a self-training framework based on the domain-agnostic geometrical constraints. Specifically, we train a neural network to predict the 2D keypoints of a satellite and then use PnP to estimate the pose. The poses of target samples are regarded as latent variables to formulate the task as a minimization problem. Furthermore, we leverage fine-grained segmentation to tackle the information loss issue caused by abstracting the satellite as sparse keypoints. Finally, we iteratively solve the minimization problem in two steps: pseudo-label generation and network training. Experimental results show that our method adapts well to the target domain. Moreover, our method won the 1st place on the sunlamp task of the second international Satellite Pose Estimation Competition.
翻译:最近,卫星表面估计中未经监督的域适应工作日益受到关注,目的是降低深层模型培训的批注成本。 为此,我们提议了一个基于域名的几何限制的自我培训框架。 具体地说, 我们训练一个神经网络来预测卫星的2D关键点, 然后使用PnP来估计其构成。 目标样本的构成被视为潜在的变量, 以将任务发展成一个最小化的问题。 此外, 我们利用细微的分解来解决由于将卫星抽象为稀疏的关键点而导致的信息损失问题。 最后, 我们反复地用两个步骤解决最小化问题: 假标签生成和网络培训。 实验结果显示, 我们的方法非常适合目标领域 。 此外, 我们的方法赢得了第二次国际卫星粒子动画竞赛日光任务的第一位置 。