Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shift, a phenomenon frequently caused by user adaptation to a deployed model or a dynamic environment. Herein, we develop a bound characterizing such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violation as our primary result. We then develop bounds for specific worked examples, adopting two commonly used fairness definitions (i.e., demographic parity and equalized odds) for two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift as well as real-world data.
翻译:如果算法预测在某种源的分布上是“公平”的,那么对于一个与某种源的源码不同的未知目标分布仍然公平吗?在本文中,我们研究受约束分布变化影响的机器学习预测器(即分类器或递减器)的统计群体公平性可转移性,这是一个经常由用户适应已部署模式或动态环境造成的现象。在这里,我们发展了这种可转移性的约束性,将机器学习可能不适当的部署用于具有社会意义的任务。我们首先开发了一个框架,将违反统计公平的情况与分配变化相挂钩,为转移的公平性违反行为制定通用的上限,作为我们的主要结果。我们随后为具体的工作实例制定界限,对两种分配变化周期(即共同变换和标签变换)采用两种常用的公平性定义(即人口均等和均等率)。最后,我们将我们的理论界限与分配变化的确定性模式以及真实世界数据进行比较。