Alongside the rapid development of data collection and analysis techniques in recent years, there is increasingly an emphasis on the need to address information leakage associated with such usage of data. To this end, much work in the privacy literature is devoted to the protection of individual users and contributors of data. However, some situations instead require a different notion of data confidentiality involving global properties aggregated over the records of a dataset. Such notions of information protection are particularly applicable for business and organization data, where global properties may reflect trade secrets, or demographic data, which can be harmful if mishandled. Recent work on property inference attacks furthermore shows how data analysis algorithms can be susceptible to leaking these global properties of data, highlighting the importance of developing mechanisms that can protect such information. In this work, we demonstrate how a distribution privacy framework can be applied to formalize the problem of protecting global properties of datasets. Given this framework, we investigate several mechanisms and their tradeoffs for providing this notion of data confidentiality. We analyze the theoretical protection guarantees offered by these mechanisms under various data assumptions, then implement and empirically evaluate these mechanisms for several data analysis tasks. The results of our experiments show that our mechanisms can indeed reduce the effectiveness of practical property inference attacks while providing utility substantially greater than a crude group differential privacy baseline. Our work thus provides groundwork for theoretically supported mechanisms for protecting global properties of datasets.


翻译:近年来,随着数据收集和分析技术的迅速发展,人们日益强调需要处理与数据使用相关的信息泄漏问题,为此,隐私文献中的许多工作都致力于保护个人用户和数据提供者,然而,有些情况却要求采用不同的数据保密概念,涉及由数据集记录汇总的全球性质;这类信息保护概念特别适用于商业和组织数据,其中全球性质可能反映贸易秘密或人口数据,如果处理不当,这种数据可能有害;最近关于财产推断攻击的工作还表明,数据分析算法如何可能泄露这些全球数据特性,强调建立能够保护这类信息的机制的重要性;在这项工作中,我们证明如何应用一个分配隐私框架,将保护全球数据集特性的问题正式化;鉴于这一框架,我们调查提供这种数据保密概念的若干机制及其取舍。 我们根据各种数据假设分析了这些机制提供的理论保护保证,然后实施并用经验评价了这些机制来完成若干数据分析任务。 我们的实验结果显示,我们的机制可以大大降低我们为保护这类信息提供这类信息的机制的重要性,与此同时,我们为保护全球基本财产的效用提供了一种基础。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员