The content that a recommender system (RS) shows to users influences them. Therefore, when choosing a recommender to deploy, one is implicitly also choosing to induce specific internal states in users. Even more, systems trained via long-horizon optimization will have direct incentives to manipulate users: in this work, we focus on the incentive to shift user preferences so they are easier to satisfy. We argue that - before deployment - system designers should: estimate the shifts a recommender would induce; evaluate whether such shifts would be undesirable; and perhaps even actively optimize to avoid problematic shifts. These steps involve two challenging ingredients: estimation requires anticipating how hypothetical algorithms would influence user preferences if deployed - we do this by using historical user interaction data to train a predictive user model which implicitly contains their preference dynamics; evaluation and optimization additionally require metrics to assess whether such influences are manipulative or otherwise unwanted - we use the notion of "safe shifts", that define a trust region within which behavior is safe: for instance, the natural way in which users would shift without interference from the system could be deemed "safe". In simulated experiments, we show that our learned preference dynamics model is effective in estimating user preferences and how they would respond to new recommenders. Additionally, we show that recommenders that optimize for staying in the trust region can avoid manipulative behaviors while still generating engagement.


翻译:推荐者系统(RS)向用户展示的内容对用户有影响。因此,在选择推荐者时,人们也暗含地选择引导用户的特定内部状态。更何况,通过长正正正正优化培训的系统将直接激励用户操纵:在这项工作中,我们侧重于改变用户偏好以便更容易满足的激励。我们主张,在部署之前,系统设计者应当:估计推荐者所引发的转变;评估这种转变是否不可取;或许甚至积极优化以避免有问题的转变。这些步骤涉及两个具有挑战性的因素:估计要求预测假设的算法如果被部署将如何影响用户偏好——我们这样做的方法是利用历史用户互动数据来培训一种预知用户模型,该模型隐含其偏好动态;评估和优化额外要求用量度来评估这种影响是否具有操纵性或非必要性。我们使用“安全转变”的概念来界定一个行为安全的信任区域:例如,用户在不受系统干扰的情况下会自然地转移。这些步骤涉及两个具有挑战的因素:如果被部署,则需要预见假设的算出假设性算法会如何影响用户偏好-我们这样做时,我们利用历史用户交互互动数据来训练者在评估用户偏好度模型时会建议如何评估用户偏好度,我们如何在评估用户偏好度时,我们如何在评估用户偏好度。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员