In this paper, we study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation. Previous works on SFDA mainly focus on aligning the cross-domain distributions. However, they ignore the generalization ability of the pretrained source model, which largely influences the initial target outputs that are vital to the target adaptation stage. To address this, we make the interesting observation that the model accuracy is highly correlated with whether or not attention is focused on the objects in an image. To this end, we propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA. Specifically, we apply the Transformer as the attention module and inject it into a convolutional network. By doing so, the model is encouraged to turn attention towards the object regions, which can effectively improve the model's generalization ability on the target domains. Moreover, a novel self-supervised knowledge distillation approach is proposed to adapt the Transformer with target pseudo-labels, thus further encouraging the network to focus on the object regions. Experiments on three domain adaptation tasks, including closed-set, partial-set, and open-set adaption, demonstrate that TransDA can greatly improve the adaptation accuracy and produce state-of-the-art results. The source code and trained models are available at https://github.com/ygjwd12345/TransDA.


翻译:在本文中,我们研究了无源域适应(SFDA)的任务,在目标适应期间没有源数据。以前关于SFDA的工作主要侧重于协调跨域分布。然而,他们忽视了预先培训的来源模型的普及能力,这在很大程度上影响了对目标适应阶段至关重要的初步目标产出。为了解决这一问题,我们提出有趣的意见,即模型准确性与是否关注图像中的对象高度相关。为此,我们提议了一个基于变压器(名为 TransDA)的通用有效框架,以学习SFDA的普遍模式。具体地说,我们将变压器作为关注模块,将其注入一个革命性网络。通过这样做,鼓励该模型将注意力转向目标区域,从而能够有效地提高模型在目标适应阶段的普及能力。此外,我们提议了一种全新的自我监督知识蒸馏法方法,以目标变压器(称为 TransfordDA)123,从而进一步鼓励网络关注对象区域。在三个域的适应任务上进行实验,包括封闭的、经过培训的TRIVDA/AA 部分调整结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员