With the advent of an increasing number of Augmented and Virtual Reality applications that aim to perform meaningful and controlled style edits on images of human faces, the impetus for the task of parsing face images to produce accurate and fine-grained semantic segmentation maps is more than ever before. Few State of the Art (SOTA) methods which solve this problem, do so by incorporating priors with respect to facial structure or other face attributes such as expression and pose in their deep classifier architecture. Our endeavour in this work is to do away with the priors and complex pre-processing operations required by SOTA multi-class face segmentation models by reframing this operation as a downstream task post infusion of disentanglement with respect to facial semantic regions of interest (ROIs) in the latent space of a Generative Autoencoder model. We present results for our model's performance on the CelebAMask-HQ and HELEN datasets. The encoded latent space of our model achieves significantly higher disentanglement with respect to semantic ROIs than that of other SOTA works. Moreover, it achieves a 13% faster inference rate and comparable accuracy with respect to the publicly available SOTA for the downstream task of semantic segmentation of face images.


翻译:随着越来越多的强化和虚拟现实应用的出现,这些应用旨在对人脸图像进行有意义和受控的编辑,对面部图像进行剖析,以制作准确和细微的语义分解图的动力比以往任何时候要大得多。艺术国家(SOTA)很少采用解决这一问题的方法,而是将面部结构或其他面部属性,如表情和深层分类结构中的表情和表情等属性纳入其中。我们这项工作的目的是消除SOTA多层面部分解模型所需的前期和复杂的预处理操作,为此将这一操作重新组合成一个下游任务,将面部图像与Geneoration Autencoder模型潜在空间的相融合。我们介绍了我们的模型在CeebAMsk-HQ和HELEN数据集中的性能。我们模型的潜在空间与SOTA多级面部图谱模型的内置和复杂前处理操作相交织得比其他SOTA图像的正文分立性要高得多。此外,SOTA图像的下游图段比可比较性高。

0
下载
关闭预览

相关内容

ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员