This paper proposes a Disentangled gEnerative cAusal Representation (DEAR) learning method under appropriate supervised information. Unlike existing disentanglement methods that enforce independence of the latent variables, we consider the general case where the underlying factors of interests can be causally related. We show that previous methods with independent priors fail to disentangle causally related factors even under supervision. Motivated by this finding, we propose a new disentangled learning method called DEAR that enables causal controllable generation and causal representation learning. The key ingredient of this new formulation is to use a structural causal model (SCM) as the prior distribution for a bidirectional generative model. The prior is then trained jointly with a generator and an encoder using a suitable GAN algorithm incorporated with supervised information on the ground-truth factors and their underlying causal structure. We provide theoretical justification on the identifiability and asymptotic convergence of the proposed method. We conduct extensive experiments on both synthesized and real data sets to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks in terms of sample efficiency and distributional robustness.
翻译:本文在适当监督的信息下提出了一种分解的CAusal代表制(DEAR)学习方法。与现有的执行潜在变数独立性的分解方法不同,我们考虑的是潜在变数独立性的现有分解方法,我们考虑的是潜在的利害因素可能因果关联的一般情况。我们表明,以前采用独立的前期方法,即使在监督之下,也未能解开因果关系相关因素。我们提出一个新的分解的学习方法,称为DEAR, 促成因果关系生成和因果代表制学习。这一新公式的关键内容是使用结构性因果模型(SCM)作为前期分配双向基因模型。之前,先与一个发电机和编码器共同培训,使用适当的GAN算法,结合关于地面图象因素及其内在因果结构的受监督信息。我们从理论上解释了拟议方法的可辨性和从属性趋同性。我们对综合和真实数据集进行了广泛的实验,以证明DEAR在因果关系生成方面的有效性,以及在抽样分布和稳健度的下游任务中,从学术表述中受益。