We demonstrate a method for localizing where two smooths differ using a true discovery proportion (TDP) based interpretation. The procedure yields a statement on the proportion of some region where true differences exist between two smooths, which results from use of hypothesis tests on collections of basis coefficients parametrizing the smooths. The methodology avoids otherwise ad hoc means of doing so such as performing hypothesis tests on entire smooths of subsetted data. TDP estimates are 1-alpha confidence bounded simultaneously, assuring that the estimate for a region is a lower bound on the proportion of actual difference, or true discoveries, in that region with high confidence regardless of the number, location, or size of regions for which TDP is estimated. Our procedure is based on closed-testing using Simes local test. We develop expressions for the covariance of quadratic forms because of the multiple regression framework in which we use closed-testing results, which are shown to be non-negative in many settings. Our procedure is well-powered because of a result on the off-diagonal decay structure of the covariance matrix of penalized B-splines of degree two or less. We demonstrate achievement of estimated TDP in simulation for different specified alpha levels and degree of difference and analyze a data set of walking gait of cerebral palsy patients. Keywords: splines; smoothing; multiple testing; closed-testing; simultaneous confidence


翻译:在使用真实的发现比例(TDP)进行解释时,我们展示了一种方法,在两种光滑存在差异时,使用两种光滑之间存在真正差异的区域比例。该程序产生一个说明,说明在两个光滑之间存在真正差异的区域比例,这是对基系数的收集进行假设测试的结果,使光滑成形。我们通过这种方法避免采取其他临时性方法,例如对子集数据的整个光滑进行假设测试。TDP估计数是同时捆绑在一起的,确保一个区域的估计数在实际差异或真实发现的比例方面,受实际差异或真实发现的比例限制较低,而不论受惩罚的BSprine区域的数量、位置或大小。我们的程序以使用Simes本地测试的封闭测试为基础。我们开发了四方形形式的共变表达方式,因为我们使用封闭测试结果的多重回归框架显示在许多环境中不存在反差。我们的程序之所以有效,是因为受处罚的Bspline区域差异或真实发现的比例较低,而信任度则较高。我们的程序之所以有效,是因为受处罚的Bsline区域差异矩阵、位置或较小。我们的程序以封闭式测试的Bspalimalimal ASimal ASimal adal deal dealalalalalalal adal beal beal bealal adalalalalal adal beal beal beal beal beal begal begalgaldal bedaldaldaldalgal bedal bedal bedal bedal bedalgaldal beal bedaldalgalgaldaldaldaldaldaldaldaldaldaldationaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员