Various 3D reconstruction methods have enabled civil engineers to detect damage on a road surface. To achieve the millimetre accuracy required for road condition assessment, a disparity map with subpixel resolution needs to be used. However, none of the existing stereo matching algorithms are specially suitable for the reconstruction of the road surface. Hence in this paper, we propose a novel dense subpixel disparity estimation algorithm with high computational efficiency and robustness. This is achieved by first transforming the perspective view of the target frame into the reference view, which not only increases the accuracy of the block matching for the road surface but also improves the processing speed. The disparities are then estimated iteratively using our previously published algorithm where the search range is propagated from three estimated neighbouring disparities. Since the search range is obtained from the previous iteration, errors may occur when the propagated search range is not sufficient. Therefore, a correlation maxima verification is performed to rectify this issue, and the subpixel resolution is achieved by conducting a parabola interpolation enhancement. Furthermore, a novel disparity global refinement approach developed from the Markov Random Fields and Fast Bilateral Stereo is introduced to further improve the accuracy of the estimated disparity map, where disparities are updated iteratively by minimising the energy function that is related to their interpolated correlation polynomials. The algorithm is implemented in C language with a near real-time performance. The experimental results illustrate that the absolute error of the reconstruction varies from 0.1 mm to 3 mm.
翻译:各种 3D 重建方法使土木工程师能够探测到道路表面的损坏。 为了达到道路状况评估所需的毫米精度, 需要使用一个配有亚像素分辨率的偏差图。 但是, 现有的立体匹配算法没有一个是特别适合重建道路表面的。 因此, 在本文中, 我们提出一个新的密集的亚像素差异估计算法, 其计算效率和稳健性高。 这是通过首先将目标框架的视角转换为参考视图来实现的, 这不仅提高了路面区块匹配的精度, 而且还提高了处理速度。 然后, 使用我们先前公布的算法来迭代估算差异, 搜索范围是从三个相邻的估计差异传播的。 由于搜索范围是从先前的迭代算法中得来, 可能发生错误, 因而, 为了纠正这一问题, 而子像素解解的解算法, 不仅提高了路标图的精确度, 还提高了路标的精确度, 并且从Markov 调控点字段和快速双边 Sterioo 使用了我们以前出版的算法 。 由于先前的检索范围, 将进一步改进了比值的精确性变差 。 。 。 正在引入了比 。 。 将 将 将 的精确性变差值 。 将 将 的 的 将 与精确性 的 的 的 的 将 与精确性平差值的 的 与精确性平差 的 的 的 的 的 的 与精确性平差 。