We introduce a deep learning-based framework for weakly enforcing boundary conditions in the numerical approximation of partial differential equations. Building on existing physics-informed neural network and deep Ritz methods, we propose the Deep Uzawa algorithm, which incorporates Lagrange multipliers to handle boundary conditions effectively. This modification requires only a minor computational adjustment but ensures enhanced convergence properties and provably accurate enforcement of boundary conditions, even for singularly perturbed problems. We provide a comprehensive mathematical analysis demonstrating the convergence of the scheme and validate the effectiveness of the Deep Uzawa algorithm through numerical experiments, including high-dimensional, singularly perturbed problems and those posed over non-convex domains.
翻译:暂无翻译