We propose a method for 3D shape reconstruction from unoriented point clouds. Our method consists of a novel SE(3)-equivariant coordinate-based network (TF-ONet), that parametrizes the occupancy field of the shape and respects the inherent symmetries of the problem. In contrast to previous shape reconstruction methods that align the input to a regular grid, we operate directly on the irregular point cloud. Our architecture leverages equivariant attention layers that operate on local tokens. This mechanism enables local shape modelling, a crucial property for scalability to large scenes. Given an unoriented, sparse, noisy point cloud as input, we produce equivariant features for each point. These serve as keys and values for the subsequent equivariant cross-attention blocks that parametrize the occupancy field. By querying an arbitrary point in space, we predict its occupancy score. We show that our method outperforms previous SO(3)-equivariant methods, as well as non-equivariant methods trained on SO(3)-augmented datasets. More importantly, local modelling together with SE(3)-equivariance create an ideal setting for SE(3) scene reconstruction. We show that by training only on single, aligned objects and without any pre-segmentation, we can reconstruct novel scenes containing arbitrarily many objects in random poses without any performance loss.
翻译:我们从非定向云层中提出3D形状重建的方法。 我们的方法包括一个新的 SE(3)- 等式协调网络( TF- ONet), 配对形状的占用场, 尊重问题的内在对称性。 与先前将输入与常规网格相匹配的形状重建方法相比, 我们直接在非常规点云层上运行。 我们的建筑利用了以本地标牌操作的等式关注层。 这个机制可以让本地形状建模, 这是向大场进行缩放的关键属性。 鉴于一个不方向的、 稀少的、 噪音的点云, 我们为每个点制作了等式的特征。 这些是随后使占用场相匹配的等式交叉占用区的关键和价值。 通过查询空间的任意点, 我们预测其占用的评分。 我们显示我们的方法优于先前的SO(3) 等式方法, 以及用SO(3) 缩放数据集训练的非等式方法。 更重要的是, 我们与SE(3) 3- 建模一起制作本地建模, 而不是SE(3) 重新造型的图像, 我们只能展示一个理想的图像。