Variational autoencoders (VAEs) are one class of generative probabilistic latent-variable models designed for inference based on known data. We develop three variations on VAEs by introducing a second parameterized encoder/decoder pair and, for one variation, an additional fixed encoder. The parameters of the encoders/decoders are to be learned with a neural network. The fixed encoder is obtained by probabilistic-PCA. The variations are compared to the Evidence Lower Bound (ELBO) approximation to the original VAE. One variation leads to an Evidence Upper Bound (EUBO) that can be used in conjunction with the original ELBO to interrogate the convergence of the VAE.
翻译:----
摘要:变分自编码器(VAE)是一类生成概率隐藏变量模型,旨在基于已知数据进行推断。本文通过引入第二个参数化编码器/解码器对及一个额外的固定编码器,开发了三种VAE的变体。编码器/解码器的参数将使用神经网络学习得到,而固定编码器则由概率PCA获得。将这些变体与原始VAE的Evidence Lower Bound(ELBO)逼近进行比较。其中一种变体导致了Evidence Upper Bound(EUBO),可以与原始ELBO一起使用以审查VAE的收敛性。