Representing visual signals by implicit representation (e.g., a coordinate based deep network) has prevailed among many vision tasks. This work explores a new intriguing direction: training a stylized implicit representation, using a generalized approach that can apply to various 2D and 3D scenarios. We conduct a pilot study on a variety of implicit functions, including 2D coordinate-based representation, neural radiance field, and signed distance function. Our solution is a Unified Implicit Neural Stylization framework, dubbed INS. In contrary to vanilla implicit representation, INS decouples the ordinary implicit function into a style implicit module and a content implicit module, in order to separately encode the representations from the style image and input scenes. An amalgamation module is then applied to aggregate these information and synthesize the stylized output. To regularize the geometry in 3D scenes, we propose a novel self-distillation geometry consistency loss which preserves the geometry fidelity of the stylized scenes. Comprehensive experiments are conducted on multiple task settings, including novel view synthesis of complex scenes, stylization for implicit surfaces, and fitting images using MLPs. We further demonstrate that the learned representation is continuous not only spatially but also style-wise, leading to effortlessly interpolating between different styles and generating images with new mixed styles. Please refer to the video on our project page for more view synthesis results: https://zhiwenfan.github.io/INS.


翻译:以隐含表示方式代表视觉信号( 例如, 一个基于坐标的深网络) 在许多视觉任务中占上风。 这项工作探索了一个新的引人入胜的方向: 使用适用于各种 2D 和 3D 情景的通用方法, 培训一个标准化的隐含表示方式; 我们对各种隐含功能进行试点研究, 包括 2D 协调代表方式、 神经光亮场和签名的远程功能。 我们的解决方案是一个统一的隐含神经立体框架, 称为 INS 。 与香草隐含代表方式相反, INS 将普通隐含的功能分解成一个风格的隐含模块和内容隐含模块, 以便从样式图像和输入场景中单独编码代表的表示方式。 然后, 将一个合并模块用于汇总这些信息, 并合成出各种隐含式的输出结果。 为了规范3D 场景中的地理测量方法, 我们提议一个全新的自我蒸馏地理测量一致性损失, 以保存我们新的图像的几何精确性准确性。 在多个任务设置上进行了全面实验, 包括复杂图像的新视图的合成合成, Stylb/ develilizalizalization 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员