The generation of triangle meshes from point clouds, i.e. meshing, is a core task in computer graphics and computer vision. Traditional techniques directly construct a surface mesh using local decision heuristics, while some recent methods based on neural implicit representations try to leverage data-driven approaches for this meshing process. However, it is challenging to define a learnable representation for triangle meshes of unknown topology and size and for this reason, neural implicit representations rely on non-differentiable post-processing in order to extract the final triangle mesh. In this work, we propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations. Our method produces the mesh in an iterative fashion, which makes it applicable to shapes of various scales and adaptive to the local curvature of the shape. Furthermore, our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods. Experiments demonstrate the comparable reconstruction performance and favorable mesh properties over baselines.
翻译:从点云(即网状)中生成三角网状是计算机图形和计算机视觉的核心任务。传统技术直接用本地决定超光学直接构建表面网状,而基于神经隐含表层的一些最新方法则试图为这一网状过程利用数据驱动的方法。然而,为具有未知地形学和大小的三角网状确定一个可学习的表达方式是具有挑战性的,因此,神经隐含表达方式依赖于非区别的后处理以提取最后三角网状。在这项工作中,我们提出了一种利用神经隐含表层图状提取表面网状的新型可区别的网状算法。我们的方法以迭接方式生成网状,它适用于各种尺度的形状,并适应形状的当地曲线。此外,我们的方法产生带有常规的三角关系模式和比现有方法更少的三角面面。实验显示了可比的重建性以及比基线更优的网状特性。