We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal exists on some unknown topological space from which we sample a discrete graph. In the absence of a coordinate system to identify the sampled nodes, we propose approximating their location with a spectral embedding of the graph. This allows us to train INRs without knowing the underlying continuous domain, which is the case for most graph signals in nature, while also making the INRs independent of any choice of coordinate system. We show experiments with our method on various real-world signals on non-Euclidean domains.
翻译:我们考虑的是学习非欧洲域信号的隐含神经表(INRs)的问题。 在欧几里得案例中, IRS接受常规光束上信号的离散抽样训练。 在这里, 我们假设连续信号存在于一些未知的地貌空间, 我们从这些空间取样一个离散的图。 在没有协调系统来识别抽样节点的情况下, 我们建议用图的光谱嵌入来接近它们的位置。 这使我们能够在不了解基本连续域的情况下培训IRS, 自然界中大多数图表信号都是这种情况, 同时使IRS独立于协调系统的任何选择。 我们展示了在非欧洲域的各种现实世界信号上使用我们的方法的实验。