It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning proposed in [1] showed success in adopting a deep network for feature extraction followed by a GP used as function model. Recently, [2] suggested that the deterministic nature of feature extractor may lead to overfitting while the replacement with a Bayesian network seemed to cure it. Here, we propose the conditional Deep Gaussian Process (DGP) in which the intermediate GPs in hierarchical composition are supported by the hyperdata and the exposed GP remains zero mean. Motivated by the inducing points in sparse GP, the hyperdata also play the role of function supports, but are hyperparameters rather than random variables. We use the moment matching method [3] to approximate the marginal prior for conditional DGP with a GP carrying an effective kernel. Thus, as in empirical Bayes, the hyperdata are learned by optimizing the approximate marginal likelihood which implicitly depends on the hyperdata via the kernel. We shall show the equivalence with the deep kernel learning in the limit of dense hyperdata in latent space. However, the conditional DGP and the corresponding approximate inference enjoy the benefit of being more Bayesian than deep kernel learning. Preliminary extrapolation results demonstrate expressive power of the proposed model compared with GP kernel composition, DGP variational inference, and deep kernel learning. We also address the non-Gaussian aspect of our model as well as way of upgrading to a full Bayes inference.


翻译:将深层学习的表达力与高斯进程(GP)结合到一个直观的贝叶西亚学习模式中是可取的。[1]中提议的深内核学习显示,在采用深度的地貌提取网络后,成功地采用了深度的地貌提取网络,随后又采用了一种通用的功能模型。最近,[2]提出,地貌提取器的确定性性质可能导致过度适应,而代之以巴伊西亚网络似乎能治愈它。这里,我们提议有条件的深戈西亚进程(DGP),在这个进程中,等级构成的中间性GP得到超高数据的支持,而暴露的GP仍然为零。由稀薄的GP中导出点推动的深内核学习显示,超高数据也具有功能支持作用,但具有超双立度,而不是随机变量。我们利用这一时间匹配方法将有条件的DGPGP的先前边际特性与含有有效内核电流的GPA值的GPA值模型相匹配。因此,我们通过内核内核的极中隐含的超度数据来了解了极深层GPGPOP的深度的深度变异。我们在深层的深度的深度的深度的深度的深度的深度的深度的深度的深度学习结果中要和深深层深深层深层深层GPGPGPLP结果的学习结果的深层结果结果的深度的深度的深度的深度的深度学习结果的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度,我们,从而的深度学习结果的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深层学习,从而的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深层,也是在空间的深度的深度的深深深层的深度的深度的深度的深度

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
10+阅读 · 2021年2月18日
Inferred successor maps for better transfer learning
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月24日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
10+阅读 · 2021年2月18日
Inferred successor maps for better transfer learning
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Top
微信扫码咨询专知VIP会员