This thesis is mainly concerned with state-space approaches for solving deep (temporal) Gaussian process (DGP) regression problems. More specifically, we represent DGPs as hierarchically composed systems of stochastic differential equations (SDEs), and we consequently solve the DGP regression problem by using state-space filtering and smoothing methods. The resulting state-space DGP (SS-DGP) models generate a rich class of priors compatible with modelling a number of irregular signals/functions. Moreover, due to their Markovian structure, SS-DGPs regression problems can be solved efficiently by using Bayesian filtering and smoothing methods. The second contribution of this thesis is that we solve continuous-discrete Gaussian filtering and smoothing problems by using the Taylor moment expansion (TME) method. This induces a class of filters and smoothers that can be asymptotically exact in predicting the mean and covariance of stochastic differential equations (SDEs) solutions. Moreover, the TME method and TME filters and smoothers are compatible with simulating SS-DGPs and solving their regression problems. Lastly, this thesis features a number of applications of state-space (deep) GPs. These applications mainly include, (i) estimation of unknown drift functions of SDEs from partially observed trajectories and (ii) estimation of spectro-temporal features of signals.


翻译:这一理论主要涉及解决深(时)高斯回归问题的国家-空间方法。 更具体地说, 我们将DGP作为由分层差异方程式( SDEs) 组成的分级系统来代表DGP, 然后我们通过使用州- 空间过滤和平滑方法来解决DGP回归问题。 由此产生的州- 空间DGP( SS- DGP) 模型产生了与模拟一些不规则信号/功能相匹配的丰富前科类别。 此外, 由于其马尔科维亚结构, SS- DGP回归问题可以通过使用巴伊西亚过滤和平滑的方法来有效解决。 其第二个贡献是, 我们通过使用Taylor瞬间扩展( TME) 方法来解决连续分解高斯过滤和平滑问题。 这导致了一系列过滤和平滑的过滤器和平滑器,可以非常精确地预测分解方程式( SDEs) 的平均值和变异性方方程式( TME 方法和 TME 过滤器和平滑度模型的特性与S- GPS- 的解度应用( ) 和解解解算的S- miss- miss- 等- plas- plas- plas- pal- pal- 的特性的特性的特性的特性的特性的特性的特性的特性和序号等解算法( ) 的特性的特性和解的特性的特性的特性的特性的特性的特性和序号与S- 等解的特性的特性的特性的特性的特性的特性的特性的特性的特性的特性和序号与S- 的解算法- 等) 、 的解的解的解的解的解的解的解的解的解的解的解的解的解的解的解的特性的解的解的解的解的解的解的解的解的解的解的解的解的解的解的解的解的解的解。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
6+阅读 · 2021年10月26日
Arxiv
7+阅读 · 2021年10月19日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员