We present a novel proof of de Finetti's Theorem characterizing permutation-invariant probability measures of infinite sequences of variables, so-called exchangeable measures. The proof is phrased in the language of Markov categories, which provide an abstract categorical framework for probability and information flow. This abstraction allows for multiple versions of the original theorem to arise as consequences merely by interpreting the categorical result in different Markov categories. Moreover, the diagrammatic and abstract nature of the arguments makes the proof intuitive and easy to follow.
翻译:我们提出了一个新颖的证明,证明德法林蒂理论的理论,它以无限变量序列的变异-变异概率尺度为特征,即所谓的可交换措施。证据用马尔科夫类别的语言表述,为概率和信息流动提供了抽象的绝对框架。这种抽象化使得原始理论的多种版本能够产生,其后果仅仅是通过解释不同的马尔科夫类别中的绝对结果。此外,这些论点的图表和抽象性质使得证据的直观和容易理解。