The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from discrete distributions. However, continuous distributions have to be discretized because the corresponding measures cannot be defined on all subsets of their carriers. This paper proposes the use of synthetic topology to model continuous distributions for probabilistic computations in type theory. We study the initial $\sigma$-frame and the corresponding induced topology on arbitrary sets. Based on these intrinsic topologies we define valuations and lower integrals on sets, and prove versions of the Riesz and Fubini theorems. We then show how the Lebesgue valuation, and hence continuous distributions, can be constructed.
翻译:ALEA Coq 图书馆根据Giry monad 的变体将测量理论正式化, 其依据是各组的类别。 这样可以解释一种概率性编程语言, 以原始的原始方式从离散分布中取样。 但是, 连续的分布必须分开, 因为相应的措施无法对其所有子集的载体进行定义 。 本文建议使用合成地形学来模拟连续的分布, 以便在类型理论中进行概率计算 。 我们研究了最初的 $\ sigma$ 框架, 以及任意集的对应引导表 。 基于这些内在的表层, 我们定义了对各组的估价和较低集的集成, 并证明了Riesz 和 Fubini 理论的版本 。 然后我们展示了如何构建Lebesgue 估值, 以及连续的分布 。