A finite form of de Finetti's representation theorem is established using elementary information-theoretic tools: The distribution of the first $k$ random variables in an exchangeable binary vector of length $n\geq k$ is close to a mixture of product distributions. Closeness is measured in terms of the relative entropy and an explicit bound is provided.
翻译:使用基本的信息理论工具确定了一种有限的形式,即Finetti代表理论:在长度为$\geq k$的可交换的二进制矢量中,第一个k美元随机变量的分布接近于产品分布的混合体。