We analyse the complexity of learning first-order queries in a model-theoretic framework for supervised learning introduced by (Grohe and Tur\'an, TOCS 2004). Previous research on the complexity of learning in this framework focussed on the question of when learning is possible in time sublinear in the background structure. Here we study the parameterized complexity of the learning problem. We have two main results. The first is a hardness result, showing that learning first-order queries is at least as hard as the corresponding model-checking problem, which implies that on general structures it is hard for the parameterized complexity class AW[*]. Our second main contribution is a fixed-parameter tractable agnostic PAC learning algorithm for first-order queries over sparse relational data (more precisely, over nowhere dense background structures).


翻译:我们分析了在(格罗厄和图尔安,TOCS,2004年)引入的监督性学习模式理论框架内学习一阶询问的复杂性。我们分析了在(格罗厄和图尔安,TOCS,2004年)引入的监管性学习模式理论框架中学习一阶询问的复杂性。我们以前关于这一框架中学习复杂性的研究侧重于在背景结构中何时在时间线下可以学习的问题。我们在这里研究学习学习问题的参数复杂性。我们有两个主要结果。第一个是难度结果,表明学习一阶询问至少和相应的模式检查问题一样困难,这意味着在一般结构中,参数化复杂等级AW[*]很难。我们的第二个主要贡献是针对稀薄关系数据(更精确地说,超稠密背景结构)的一阶查询的固定参数可可移动的不可知的 PAC学习算法。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
17+阅读 · 2019年3月28日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年8月26日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
17+阅读 · 2019年3月28日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Top
微信扫码咨询专知VIP会员