This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a particular structure for coding that resembles both the ML and the joint-typicality coders. Although stochastic encoders and decoders do not usually enhance the capacity region, their use simplifies the analysis. The Jensen inequality lies at the heart of error analysis, which enables us to deal with the expectation of many terms coming from stochastic encoders and decoders at once. The technique is illustrated via several examples: point-to-point channel coding, Gelfand-Pinsker, Broadcast channel (Marton), Berger-Tung, Heegard-Berger/Kaspi, Multiple description coding and Joint source-channel coding over a MAC. Most of our one-shot results are new. The asymptotic forms of these expressions is the same as that of classical results. Our one-shot bounds in conjunction with multi-dimensional Berry-Essen CLT imply new results in the finite blocklength regime. In particular applying the one-shot result for the memoryless broadcast channel in the asymptotic case, we get the entire region of Marton's inner bound without any need for time-sharing.
翻译:本文提出一种新颖的技术, 以证明网络信息理论中一次性版本的可实现结果。 该技术并非基于覆盖和包装 Lemmas 。 在这种技术中, 我们使用一个具有类似于 ML 和 联合典型代码器的特殊编码结构的随机编码编码器和解码器。 虽然随机编码器和解码器通常不会增强能力区域, 它们的使用简化了分析。 Jensen 的不平等性是共享错误分析的核心, 这使我们能够同时处理来自随机编码器和解码器的许多术语的预期。 在这种技术中, 我们用几个例子来说明: 点对点的编码器编码器、 Gelfand- Pinsker、 广播频道( Marton)、 Berger- Tung、 Heegard- Berger/ Kaspi、 多个描述编码器和联合源码编码器。 我们的一发式分析结果大多是新的。 这些表达式的表情形式与经典的内层结果相同, 我们的内层的内存式系统结果是一号的内, 。