Portfolio management is a multi-period multi-objective optimisation problem subject to a wide range of constraints. However, in practice, portfolio management is treated as a single-period problem partly due to the computationally burdensome hyper-parameter search procedure needed to construct a multi-period Pareto frontier. This study presents the \gls{ParDen-Sur} modelling framework to efficiently perform the required hyper-parameter search. \gls{ParDen-Sur} extends previous surrogate frameworks by including a reservoir sampling-based look-ahead mechanism for offspring generation in \glspl{EA} alongside the traditional acceptance sampling scheme. We evaluate this framework against, and in conjunction with, several seminal \gls{MO} \glspl{EA} on two datasets for both the single- and multi-period use cases. Our results show that \gls{ParDen-Sur} can speed up the exploration for optimal hyper-parameters by almost $2\times$ with a statistically significant improvement of the Pareto frontiers, across multiple \glspl{EA}, for both datasets and use cases.
翻译:组合组合管理是一个多周期多目标优化问题,但实际上,组合管理被视为一个单一周期问题,部分是由于建造多周期Pareto边界所需的计算繁琐的超参数搜索程序。本研究报告介绍了有效进行所要求的超参数搜索所需的两个数据集的模型框架。\gls{ParDen-Sur}扩展了以前的代位框架,在传统的接受采样计划的同时,在\glspl{EA}中为后代一代添加了一个基于储油层采样的外观-头机制。我们评估这一框架是针对几个单期和多期使用案例的半参数搜索程序,并与该程序一起进行。我们的研究结果显示,\gls{ParDen-Sur}可以加快探索最佳超参数的速度,利用近2美元,在统计上显著地改进了Pareto边界,并用于多个/glsplEA}和多个案例。